## AngouriMath

## Navigation

## Solvers

Here we shall review different ways to solve equations, inequalities, statements, systems.

## Solving a classic equation

The method to solve a classic equation over a single variable in AM is

```
Entity expr = "2sin(a x) - b";
Console.WriteLine(expr.SolveEquation("x"));
```

Output:
`{ (arcsin(b / 2) + 2 * pi * n_1) / a, (pi - arcsin(b / 2) + 2 * pi * n_1) / a }`

Nonetheless, AM allows you to solve

Extension:

## Solving a statement

A

Let us start from a simple example:

```
Entity expr = "x2 = 16";
Console.WriteLine(expr.Solve("x"));
```

Output:
`{ 4, -4 }`

Here is a more advanced example:

```
Entity expr = "x4 = 16 and x in RR and x > 0";
Console.WriteLine(expr.Solve("x"));
```

Output:
`{ 2 }`

Adding another condition:

```
Entity expr = "x4 = 16 and x in RR and x > 0 or x^a = 6";
Console.WriteLine(expr.Solve("x"));
```

Output:
`{ 2, 6 ^ (1 / a) }`

Example with inequalities:

```
Entity expr = "2x2 - 3 > 0 and x > 0";
Console.WriteLine(expr.Solve("x").Simplify());
Entity expr2 = "2x2 - 3 > 0 or x > 0";
Console.WriteLine(expr2.Solve("x").Simplify());
```

Output:
```
((-oo; -sqrt(24) / 4) \/ (sqrt(24) / 4; +oo)) /\ (0; +oo)
(-oo; -sqrt(24) / 4) \/ (sqrt(24) / 4; +oo) \/ (0; +oo)
```

Extension:

The returned value is a

```
Entity expr = "a x2 + b x + c = 0";
var solutions = expr.Solve("x");
if (solutions is Entity.Set.FiniteSet finiteSet)
{
foreach (var root in finiteSet)
Console.WriteLine($"Root: {root}");
}
```

Output:
```
Root: (-b - sqrt(b ^ 2 - 4 * a * c)) / (2 * a)
Root: (-b + sqrt(b ^ 2 - 4 * a * c)) / (2 * a)
```

## Solving system of equations

Every equation of the system should be written as a simple equation (as in the first part of the article). The method of

```
var system = Equations(
"x2 + a y3",
"y - x - b"
);
```

This creates an instance of `Console.WriteLine(system);`

Output:
```
x ^ 2 + a * y ^ 3 = 0
y - x - b = 0
```

The method

```
var system = Equations(
"x2 + y",
"y - x - 3"
);
Console.WriteLine(system.Solve("x", "y"));
```

Output:
```
Matrix[2 x 2]
(1 - sqrt(-11)) / (-2) -((1 - sqrt(-11)) / (-2)) ^ 2
(1 + sqrt(-11)) / (-2) -((1 + sqrt(-11)) / (-2)) ^ 2
```

The first (left) column are values for Extensions:

2019-2021 Angouri · Project's repo · Site's repo · Octicons