AngouriMath
SymbolicFormOfCosine(AngouriMath.Entity)
Method (no overloads)
Summary
Finds the symbolic form of cosine, if can
For example, cos(9/14) is cos(1/2 + 1/7) which
can be expanded as a cosine of sum and hence
an analytical (symbolic) form.
For example, cos(9/14) is cos(1/2 + 1/7) which
can be expanded as a cosine of sum and hence
an analytical (symbolic) form.
Parameter "angle"
The angle in radians
Returns
The cosine's symbolic form
or null if cannot find it
or null if cannot find it
Example
using System;
using static AngouriMath.MathS.Compute;
using static AngouriMath.MathS;
Console.WriteLine(SymbolicFormOfSine(pi / 3));
Console.WriteLine(SymbolicFormOfSine(pi / 7));
Console.WriteLine(SymbolicFormOfSine(9 * pi / 14));
Console.WriteLine("------------------------------");
Console.WriteLine(SymbolicFormOfCosine(pi / 3));
Console.WriteLine(SymbolicFormOfCosine(pi / 7));
Console.WriteLine(SymbolicFormOfCosine(9 * pi / 14));
Prints
sqrt(3) / 2
sqrt(1/2 - 1/2 * sqrt(1 - sqrt(1 - (1/6 * (-1 + ((7 + 21 * sqrt(-3)) / 2) ^ (1/3) + ((7 - 21 * sqrt(-3)) / 2) ^ (1/3))) ^ 2) ^ 2))
sqrt(1 - sqrt(1/2 - 1/2 * sqrt(1 - sqrt(1 - (1/6 * (-1 + ((7 + 21 * sqrt(-3)) / 2) ^ (1/3) + ((7 - 21 * sqrt(-3)) / 2) ^ (1/3))) ^ 2) ^ 2)) ^ 2)
------------------------------
1/2
sqrt(1 - sqrt(1/2 - 1/2 * sqrt(1 - sqrt(1 - (1/6 * (-1 + ((7 + 21 * sqrt(-3)) / 2) ^ (1/3) + ((7 - 21 * sqrt(-3)) / 2) ^ (1/3))) ^ 2) ^ 2)) ^ 2)
-sqrt(1/2 - 1/2 * sqrt(1 - sqrt(1 - (1/6 * (-1 + ((7 + 21 * sqrt(-3)) / 2) ^ (1/3) + ((7 - 21 * sqrt(-3)) / 2) ^ (1/3))) ^ 2) ^ 2))
Angouri © 2019-2023 · Project's repo · Site's repo · Octicons · Transparency · 1534 pages online