AngouriMath
SymbolicFormOfSine(AngouriMath.Entity)
Method (no overloads)
Summary
Finds the symbolic form of sine, if can
For example, sin(9/14) is sin(1/2 + 1/7) which
can be expanded as a sine of sum and hence
an analytical (symbolic) form.
For example, sin(9/14) is sin(1/2 + 1/7) which
can be expanded as a sine of sum and hence
an analytical (symbolic) form.
Parameter "angle"
The angle in radians
Returns
The sine's symbolic form
or null if cannot find it
or null if cannot find it
Example
using System;
using static AngouriMath.MathS.Compute;
using static AngouriMath.MathS;
Console.WriteLine(SymbolicFormOfSine(pi / 3));
Console.WriteLine(SymbolicFormOfSine(pi / 7));
Console.WriteLine(SymbolicFormOfSine(9 * pi / 14));
Console.WriteLine("------------------------------");
Console.WriteLine(SymbolicFormOfCosine(pi / 3));
Console.WriteLine(SymbolicFormOfCosine(pi / 7));
Console.WriteLine(SymbolicFormOfCosine(9 * pi / 14));
Prints
sqrt(3) / 2
sqrt(1/2 - 1/2 * sqrt(1 - sqrt(1 - (1/6 * (-1 + ((7 + 21 * sqrt(-3)) / 2) ^ (1/3) + ((7 - 21 * sqrt(-3)) / 2) ^ (1/3))) ^ 2) ^ 2))
sqrt(1 - sqrt(1/2 - 1/2 * sqrt(1 - sqrt(1 - (1/6 * (-1 + ((7 + 21 * sqrt(-3)) / 2) ^ (1/3) + ((7 - 21 * sqrt(-3)) / 2) ^ (1/3))) ^ 2) ^ 2)) ^ 2)
------------------------------
1/2
sqrt(1 - sqrt(1/2 - 1/2 * sqrt(1 - sqrt(1 - (1/6 * (-1 + ((7 + 21 * sqrt(-3)) / 2) ^ (1/3) + ((7 - 21 * sqrt(-3)) / 2) ^ (1/3))) ^ 2) ^ 2)) ^ 2)
-sqrt(1/2 - 1/2 * sqrt(1 - sqrt(1 - (1/6 * (-1 + ((7 + 21 * sqrt(-3)) / 2) ^ (1/3) + ((7 - 21 * sqrt(-3)) / 2) ^ (1/3))) ^ 2) ^ 2))
Angouri © 2019-2023 · Project's repo · Site's repo · Octicons · Transparency · 1534 pages online