AngouriMath
Maclaurin(AngouriMath.Entity,System.Int32,AngouriMath.Entity.Variable[])
Method (no overloads)
Summary
Finds the symbolic expression of terms of the Maclaurin expansion of the given function,
Wikipedia
Wikipedia
Parameter "expr"
The function to find the Maclaurin expansion of
Parameter "degree"
The degree of the resulting Maclaurin polynomial (and the variable in the resulting series)
Parameter "exprVariables"
The variable/s to take the series over (and the variable the series will be over)
(e. g. if you have expr = Sin("t"), then you may want to use "t" for this argument)
(e. g. if you have expr = Sin("t"), then you may want to use "t" for this argument)
Returns
An expression in the polynomial form over the expression variables given in exprVariables
Example
using AngouriMath;
using System;
using System.Linq;
using static AngouriMath.MathS;
using static AngouriMath.MathS.Series;
var (x, y) = MathS.Var("x", "y");
Console.WriteLine(Sin(x));
Console.WriteLine(Maclaurin(Sin(x), 1, x));
Console.WriteLine(Maclaurin(Sin(x), 2, x));
Console.WriteLine(Maclaurin(Sin(x), 3, x));
Console.WriteLine(Maclaurin(Sin(x), 4, x));
Console.WriteLine(Maclaurin(Sin(x), 10, x).Simplify());
Console.WriteLine("----------------------");
var expr = Sin(x) + Cos(y);
Console.WriteLine(expr);
Console.WriteLine(Maclaurin(expr, 6, x, y).Simplify());
Console.WriteLine("----------------------");
Console.WriteLine(expr);
Console.WriteLine(Taylor(expr, 6, (x, 1)));
Console.WriteLine("----------------------");
Console.WriteLine(expr);
Console.WriteLine(Taylor(expr, 6, (x, 1), (y, 5)));
Console.WriteLine("----------------------");
Console.WriteLine(expr);
Console.WriteLine(Taylor(expr, 6, (x, "z_1", 1), (y, "z_2", 5)));
Console.WriteLine("----------------------");
var first3Terms =
TaylorTerms(expr, (x, x, 0), (y, y, 1))
.Take(3);
var first6Terms =
TaylorTerms(expr, (x, x, 0), (y, y, 1))
.Take(6);
foreach (var term in first6Terms)
Console.WriteLine($"Received {term}");
Prints
sin(x)
0
0 + x
0 + x + 0
0 + x + 0 + -x ^ 3 / 3!
x ^ 9 / 362880 - x ^ 7 / 5040 + x ^ 5 / 120 - x ^ 3 / 6 + x
----------------------
sin(x) + cos(y)
1 + (6 * x ^ 5 - 120 * x ^ 3) / 720 + x + (2 * y ^ 4 - 24 * y ^ 2) / 48
----------------------
sin(x) + cos(y)
sin(1) + cos(y) + cos(1) * (x - 1) + -sin(1) * (x - 1) ^ 2 / 2! + cos(1) * (-1) * (x - 1) ^ 3 / 3! + -sin(1) * (-1) * (x - 1) ^ 4 / 4! + cos(1) * (-1) * (-1) * (x - 1) ^ 5 / 5!
----------------------
sin(x) + cos(y)
sin(1) + cos(5) + cos(1) * (x - 1) + -sin(5) * (y - 5) + (-sin(1) * (x - 1) ^ 2 + cos(5) * (-1) * (y - 5) ^ 2) / 2! + (cos(1) * (-1) * (x - 1) ^ 3 + -sin(5) * (-1) * (y - 5) ^ 3) / 3! + (-sin(1) * (-1) * (x - 1) ^ 4 + cos(5) * (-1) * (-1) * (y - 5) ^ 4) / 4! + (cos(1) * (-1) * (-1) * (x - 1) ^ 5 + -sin(5) * (-1) * (-1) * (y - 5) ^ 5) / 5!
----------------------
sin(x) + cos(y)
sin(1) + cos(5) + cos(1) * (z_1 - 1) + -sin(5) * (z_2 - 5) + (-sin(1) * (z_1 - 1) ^ 2 + cos(5) * (-1) * (z_2 - 5) ^ 2) / 2! + (cos(1) * (-1) * (z_1 - 1) ^ 3 + -sin(5) * (-1) * (z_2 - 5) ^ 3) / 3! + (-sin(1) * (-1) * (z_1 - 1) ^ 4 + cos(5) * (-1) * (-1) * (z_2 - 5) ^ 4) / 4! + (cos(1) * (-1) * (-1) * (z_1 - 1) ^ 5 + -sin(5) * (-1) * (-1) * (z_2 - 5) ^ 5) / 5!
----------------------
Received cos(1)
Received x + -sin(1) * (y - 1)
Received cos(1) * (-1) * (y - 1) ^ 2 / 2!
Received (-x ^ 3 + -sin(1) * (-1) * (y - 1) ^ 3) / 3!
Received cos(1) * (-1) * (-1) * (y - 1) ^ 4 / 4!
Received (x ^ 5 + -sin(1) * (-1) * (-1) * (y - 1) ^ 5) / 5!
Angouri © 2019-2023 · Project's repo · Site's repo · Octicons · Transparency · 1534 pages online