AngouriMath
GreaterOrEqualThan(AngouriMath.Entity,AngouriMath.Entity)
Method (no overloads)
Parameter "a"
Left argument node of which the greter than or equal node will be taken
Parameter "b"
Right argument node of which the greater than or equal node function will be taken
Returns
A node
Example
using System;
using static AngouriMath.MathS;
var (x, y) = Var("x", "y");
Console.WriteLine(GreaterThan(x, y));
Console.WriteLine(GreaterThan(6, 5));
Console.WriteLine(GreaterThan(6, 5).EvalBoolean());
Console.WriteLine(GreaterThan(6, 6).EvalBoolean());
Console.WriteLine("----------------------------------");
Console.WriteLine(LessThan(x, y));
Console.WriteLine(LessThan(6, 5));
Console.WriteLine(LessThan(6, 5).EvalBoolean());
Console.WriteLine(LessThan(6, 6).EvalBoolean());
Console.WriteLine("----------------------------------");
Console.WriteLine(GreaterOrEqualThan(x, y));
Console.WriteLine(GreaterOrEqualThan(6, 5));
Console.WriteLine(GreaterOrEqualThan(6, 5).EvalBoolean());
Console.WriteLine(GreaterOrEqualThan(6, 6).EvalBoolean());
Console.WriteLine("----------------------------------");
Console.WriteLine(LessOrEqualThan(x, y));
Console.WriteLine(LessOrEqualThan(6, 5));
Console.WriteLine(LessOrEqualThan(6, 5).EvalBoolean());
Console.WriteLine(LessOrEqualThan(6, 6).EvalBoolean());
Console.WriteLine("----------------------------------");
var statement1 = GreaterThan(Sqr(x), 5);
Console.WriteLine(statement1);
Console.WriteLine(statement1.Solve("x"));
Console.WriteLine("----------------------------------");
var statement2 = GreaterThan(Sqr(x), 16) & LessThan(x, y);
Console.WriteLine(statement2);
Console.WriteLine(statement2.Solve("x"));
Console.WriteLine("----------------------------------");
var statement3 = LessThan(Sqr(x), 16) & GreaterThan(x, 2);
Console.WriteLine(statement3);
Console.WriteLine(statement3.Solve("x"));
Prints
x > y
6 > 5
True
False
----------------------------------
x < y
6 < 5
False
False
----------------------------------
x >= y
6 >= 5
True
True
----------------------------------
x <= y
6 <= 5
False
True
----------------------------------
x ^ 2 > 5
(-oo; -sqrt(20) / 2) \/ (sqrt(20) / 2; +oo)
----------------------------------
x ^ 2 > 16 and x < y
((-oo; -4) \/ (4; +oo)) /\ (-oo; -y / (-1))
----------------------------------
x ^ 2 < 16 and x > 2
(2; 4)
Angouri © 2019-2023 · Project's repo · Site's repo · Octicons · Transparency · 1534 pages online