AngouriMath
SetSubtraction(AngouriMath.Entity,AngouriMath.Entity)
Method (no overloads)
Parameter "a"
Left argument node of which the set subtraction node will be taken
That is, the resulting set of set subtraction is necessarily superset of this set
That is, the resulting set of set subtraction is necessarily superset of this set
Parameter "b"
Right argument node of which the set subtraction set node will be taken
That is, there is no element in the resulting set that belong to this one
That is, there is no element in the resulting set that belong to this one
Returns
A node
Example
using AngouriMath;
using System;
using static AngouriMath.Entity.Set;
using static AngouriMath.MathS;
using static AngouriMath.MathS.Sets;
var set1 = Finite(1, 2, 3);
var set2 = Finite(2, 3, 4);
var set3 = MathS.Interval(-6, 2);
var set4 = new ConditionalSet("x", "100 > x2 > 81");
Console.WriteLine(Union(set1, set2));
Console.WriteLine(Union(set1, set2).Simplify());
Console.WriteLine("----------------------");
Console.WriteLine(Union(set1, set3));
Console.WriteLine(Union(set1, set3).Simplify());
Console.WriteLine("----------------------");
Console.WriteLine(Union(set1, set4));
Console.WriteLine(ElementInSet(3, Union(set1, set4)));
Console.WriteLine(ElementInSet(3, Union(set1, set4)).Simplify());
Console.WriteLine(ElementInSet(4, Union(set1, set4)));
Console.WriteLine(ElementInSet(4, Union(set1, set4)).Simplify());
Console.WriteLine(ElementInSet(9.5, Union(set1, set4)));
Console.WriteLine(ElementInSet(9.5, Union(set1, set4)).Simplify());
Console.WriteLine("----------------------");
Console.WriteLine(Intersection(set1, set2));
Console.WriteLine(Intersection(set1, set2).Simplify());
Console.WriteLine("----------------------");
Console.WriteLine(Intersection(set2, set3));
Console.WriteLine(Intersection(set2, set3).Simplify());
Console.WriteLine("----------------------");
var set5 = MathS.Interval(-3, 11);
Console.WriteLine(Intersection(set3, set5));
Console.WriteLine(Intersection(set3, set5).Simplify());
Console.WriteLine(Union(set3, set5));
Console.WriteLine(Union(set3, set5).Simplify());
Console.WriteLine(SetSubtraction(set3, set5));
Console.WriteLine(SetSubtraction(set3, set5).Simplify());
Console.WriteLine("----------------------");
Entity syntax1 = @"{ 1, 2, 3 } /\ { 2, 3, 4 }";
Console.WriteLine(syntax1);
Console.WriteLine(syntax1.Simplify());
Console.WriteLine("----------------------");
Entity syntax2 = @"5 in ([1; +oo) \/ { x : x < -4 })";
Console.WriteLine(syntax2);
Console.WriteLine(syntax2.Simplify());
Console.WriteLine("----------------------");
Console.WriteLine(Intersection(Finite(pi, e, 6, 5.5m, 1 + 3 * i), Q));
Console.WriteLine(Intersection(Finite(pi, e, 6, 5.5m, 1 + 3 * i), Q).Simplify());
Console.WriteLine(Intersection(Finite(pi, e, 6, 5.5m, 1 + 3 * i), R));
Console.WriteLine(Intersection(Finite(pi, e, 6, 5.5m, 1 + 3 * i), R).Simplify());
Console.WriteLine(Intersection(Finite(pi, e, 6, 5.5m, 1 + 3 * i), C));
Console.WriteLine(Intersection(Finite(pi, e, 6, 5.5m, 1 + 3 * i), C).Simplify());
Prints
{ 1, 2, 3 } \/ { 2, 3, 4 }
{ 1, 2, 3, 4 }
----------------------
{ 1, 2, 3 } \/ [-6; 2]
{ 3 } \/ [-6; 2]
----------------------
{ 1, 2, 3 } \/ { x : 100 > x ^ 2 and x ^ 2 > 81 }
3 in { 1, 2, 3 } \/ { x : 100 > x ^ 2 and x ^ 2 > 81 }
True
4 in { 1, 2, 3 } \/ { x : 100 > x ^ 2 and x ^ 2 > 81 }
False
19/2 in { 1, 2, 3 } \/ { x : 100 > x ^ 2 and x ^ 2 > 81 }
True
----------------------
{ 1, 2, 3 } /\ { 2, 3, 4 }
{ 2, 3 }
----------------------
{ 2, 3, 4 } /\ [-6; 2]
{ 2 }
----------------------
[-6; 2] /\ [-3; 11]
[-3; 2]
[-6; 2] \/ [-3; 11]
[-6; 11]
[-6; 2] \ [-3; 11]
[-6; -3)
----------------------
{ 1, 2, 3 } /\ { 2, 3, 4 }
{ 2, 3 }
----------------------
5 in [1; +oo) \/ { x : x < -4 }
True
----------------------
{ pi, e, 6, 11/2, 1 + 3i } /\ QQ
{ 6, 11/2 }
{ pi, e, 6, 11/2, 1 + 3i } /\ RR
{ pi, e, 6, 11/2 }
{ pi, e, 6, 11/2, 1 + 3i } /\ CC
{ pi, e, 6, 11/2, 1 + 3i }
Angouri © 2019-2023 · Project's repo · Site's repo · Octicons · Transparency · 1534 pages online