## AngouriMath

## Number

## Description

**Summary**

Number node.

This class represents all possible numerical values as a hierarchy,

This class represents all possible numerical values as a hierarchy,

## Members

### Abs (AngouriMath. Entity. Number. Complex)

Method**Summary**Complex absolute value

### Arccos (AngouriMath. Entity. Number. Complex)

Method**Summary**Calculates the exact value of arccosine of num### Arccosecant (AngouriMath. Entity. Number. Complex)

Method**Summary**csc(x) = value

1 / sin(x) = value

1 / value = sin(x)

x = arcsin(1 / value)

### Arccotan (AngouriMath. Entity. Number. Complex)

Method**Summary**Calculates the exact value of arccotangent of num### Arcsecant (AngouriMath. Entity. Number. Complex)

Method**Summary**sec(x) = value

1 / cos(x) = value

1 / value = cos(x)

x = arccos(1 / value)

### Arcsin (AngouriMath. Entity. Number. Complex)

Method**Summary**Calculates the exact value of arcsine of num### Arctan (AngouriMath. Entity. Number. Complex)

Method**Summary**Calculates the exact value of arctangent of num### Cos (AngouriMath. Entity. Number. Complex)

Method**Summary**Calculates the exact value of cosine of num### Cosecant (AngouriMath. Entity. Number. Complex)

Method**Summary**Calculates the exact value of cosecant of num### Cotan (AngouriMath. Entity. Number. Complex)

Method**Summary**Calculates the exact value of cotangent of num### Exp (AngouriMath. Entity. Number. Complex)

Method**Summary**exp(x) = e^x### Factorial (AngouriMath. Entity. Number. Complex)

Method**Summary**Calculates the factorial of the specified Complex.

This implementation uses

Spouge's approximation to calculate the factorial for non-integer values.This involves calculating a series of constants that depend on the desired precision.

Since this constant calculation is quite expensive (especially for higher precisions),

the constants for a specific precision will be cached

and subsequent calls to this method with the same precision will be much faster.It is therefore recommended to do one call to this method with the standard precision of your application during the startup phase

and to avoid calling it with many different precisions.See: Wikipedia: Factorial - Extension of factorial to non-integer values of argument **Parameter "x"**The Complex**Returns**The factorial Complex### Gamma (AngouriMath. Entity. Number. Complex)

Method**Summary**Calculates the gamma function of the specified Complex.

This implementation uses {@link #factorial(ComplexNumber, MathContext)} internally,

therefore the performance implications described there apply also for this method.See: Wikipedia: Gamma function **Parameter "x"**The Complex**Returns**The gamma Complex### GetAllRoots (AngouriMath. Entity. Number. Complex, PeterO. Numbers. EInteger)

Method**Summary**Finds all complex roots of a number

e. g. sqrt(1) = { -1, 1 }

root(1, 4) = { -i, i, -1, 1 }

### GetAllRootsOf1 (PeterO. Numbers. EInteger)

Method**Summary**Gets all n-th roots of a number,

that is, all numbers whose n-th power equals 1

### InitDirectChildren

Method### InnerDifferentiate (AngouriMath. Entity. Variable)

Method### InnerEval

Method### InnerSimplify

Method### IsExact

Property**Summary**Checks whether the number is not exposed to implicit rounding

For example, integers and rationals are such

### IsZero

Method and its overloads### IsZero (AngouriMath. Entity. Number. Complex)

**Summary**Checks whether a number is zero

**Parameter "num"****Returns**### IsZero (AngouriMath. Entity. Number. Real)

**Summary**Checks whether a number is zero

**Parameter "num"****Returns**### IsZero (PeterO. Numbers. EDecimal)

**Summary**Checks whether a number is zero

**Parameter "num"****Returns**

### Ln (AngouriMath. Entity. Number. Complex)

Method**Summary**ln(x) = log(e, x)### Log (AngouriMath. Entity. Number. Complex, AngouriMath. Entity. Number. Complex)

Method**Summary**e.g. Log(2, 32) = 5**Parameter "base"**Log's base, log(base, x) is a number y such that base^y = x**Parameter "x"**The number of which we want to get its base power### op_Explicit

Method and its overloads### op_Explicit (AngouriMath. Entity. Number)~System. Decimal

**Summary**Casts a Number into a primitive.

**Exception "NumberCastException"**Thrown when either overflow or the instance of Number cannot be downcasted.

### op_Explicit (AngouriMath. Entity. Number)~System. Double

**Summary**Casts a Number into a primitive.

**Exception "NumberCastException"**Thrown when either overflow or the instance of Number cannot be downcasted.

### op_Explicit (AngouriMath. Entity. Number)~System. Int32

**Summary**Casts a Number into a primitive.

**Exception "NumberCastException"**Thrown when either overflow or the instance of Number cannot be downcasted.

### op_Explicit (AngouriMath. Entity. Number)~System. Int64

**Summary**Casts a Number into a primitive.

**Exception "NumberCastException"**Thrown when either overflow or the instance of Number cannot be downcasted.

### op_Explicit (AngouriMath. Entity. Number)~System. Numerics. BigInteger

**Summary**Casts a Number into a primitive.

**Exception "NumberCastException"**Thrown when either overflow or the instance of Number cannot be downcasted.

### op_Explicit (AngouriMath. Entity. Number)~System. Numerics. Complex

**Summary**Casts a Number into a primitive.

**Exception "NumberCastException"**Thrown when either overflow or the instance of Number cannot be downcasted.

### op_Explicit (AngouriMath. Entity. Number)~System. Single

**Summary**Casts a Number into a primitive.

**Exception "NumberCastException"**Thrown when either overflow or the instance of Number cannot be downcasted.

### Pow (AngouriMath. Entity. Number. Complex, AngouriMath. Entity. Number. Complex)

Method**Summary**e.g. Pow(2, 5) = 32**Parameter "base"**The base of the exponential, base^power**Parameter "power"**The power of the exponential, base^power### Replace (System. Func{AngouriMath. Entity, AngouriMath. Entity})

Method### Secant (AngouriMath. Entity. Number. Complex)

Method**Summary**Calculates the exact value of secant of num### Signum (AngouriMath. Entity. Number. Complex)

Method**Summary**Defines the Signum function on complex numbers

Which is z / |z|

**Parameter "num"**Number to find Signum of**Returns**A complex signum value for a non-zero argument,

0 otherwise

### Sin (AngouriMath. Entity. Number. Complex)

Method**Summary**Calculates the exact value of sine of num### Sqrt (AngouriMath. Entity. Number. Complex)

Method**Summary**Calculates the exact value of square root of num### SuperSwitch

Method and its overloads### SuperSwitch (``0, ``0, System. Func{AngouriMath. Entity. Number. Integer, AngouriMath. Entity. Number. Integer, AngouriMath. Entity. Number. Integer}, System. Func{AngouriMath. Entity. Number. Rational, AngouriMath. Entity. Number. Rational, AngouriMath. Entity. Number. Rational}, System. Func{AngouriMath. Entity. Number. Real, AngouriMath. Entity. Number. Real, AngouriMath. Entity. Number. Real}, System. Func{AngouriMath. Entity. Number. Complex, AngouriMath. Entity. Number. Complex, AngouriMath. Entity. Number. Complex})

**Summary**This function serves not only convenience but also protects from unexpected cases, for example,

if a new type added

### SuperSwitch (AngouriMath. Entity. Number, AngouriMath. Entity. Number, System. Func{AngouriMath. Entity. Number. Integer, AngouriMath. Entity. Number. Integer, ``0}, System. Func{AngouriMath. Entity. Number. Rational, AngouriMath. Entity. Number. Rational, ``0}, System. Func{AngouriMath. Entity. Number. Real, AngouriMath. Entity. Number. Real, ``0}, System. Func{AngouriMath. Entity. Number. Complex, AngouriMath. Entity. Number. Complex, ``0})

**Summary**This function serves not only convenience but also protects from unexpected cases, for example,

if a new type added

### Tan (AngouriMath. Entity. Number. Complex)

Method**Summary**Calculates the exact value of tangent of num### ToString

Method

2019-2021 Angouri · Project's repo · Site's repo · Octicons